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Abstract. The non-equilibrium critical dynamics o f  :he 3~ king spin glass, following a 
qnexch :e :he cri:icr! :e~~-perr!n:e C:a- T - m ,  -:e n:ed :a mea:n:e ba:h the dysrrc-icr! 
exponent z and the static exponent 7. The results for i and 7 are quite sensifive to the 
value assumed for T,, although the ratio (2- q ) / i  is rather insensitive. and dose to the 
value 0.39 obtained by Hure. Taking T,=1.18 gives r=5.85*0.3 and q=-0.29+0.07.  

The determination, by conventional Monte Carlo simulation, of the critical exponents 
at the spin-glass transition has been hampered by the need to fully equilibrate the 
system before measuring the quantities that determine the exponents. Indeed, this is 
a problem for any phase transition because of the phenomenon of critical slowing 
down. For pure systems, this problem can be circumvented to some extent by using 
one of the algorithms recently developed to accelerate equilibration [I]. Comparable 
techniques for random systems, however, are still in their infancy [2]. In this letter we 
introduce two novel (but related) techniques to determine the exponents z and 7. quite 
generally, by exploiting the scaling properties of a system quenched to the critical 
point from infinite temperature. We illustrate the method by applying it to the 3~ king 
spin glass. Taking T,= 1.18, the current best estimate, we obtain z=5.85*0.3,  to be 
compared with L = 6* 1 obtained by conventional methods [3]. The static exponent q 
is found to be q = -0.29*0.07. 

To demonstrate the idea, we first consider a simple Ising ferromagnet quenched 
from T = m  to T =  7, at time f =0: i.e. we study the equilibration of the system at T, 
from an initial state where each spin is randomly up or down. Because relaxation times 
are infinite at T,, equilibration is only achieved on a finite length scale f ( f ) ,  a kind 
of ‘non-equilibrium correlation length’, which increases with time as f ( f )  - f’”. The 
latter is a consequence of dynamic scaling, which has been shown to hold even for 
systems out of equilibrium [4]. 

,ne nrsc 01 our IWO memous i s  io siudy ihe iiiiie eiduiioii of ihe equai iime 
spin-spin correlation function C ( r ,  1 ) .  defined by 

(1) 

where (. . .) represents both a thermal average and an average over initial conditions. 
It is expected to exhibit the scaling form 

(2) 
with f (m) =constant. The scaling limit is defined by r +  m, f +CO with r / f l ”  arbitrary. 
Equation (2) can be used in principle to determine both q and L from the data. In 
practice, however, it is very convenient to separately determine the raiio (2 - q ) / z  by 

-- E - ~ .  c ~ . ~ ~ .  -..L.>. 

C(r,  f )  =(S(x, t ) S ( x + r ,  f)) 

C( r, f )  = r - ‘ d - 2 + 7 )  f(dW 
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measuring the ‘non-equilibrium susceptibility’ x ( f )  = N [ ( m ( l ) ’ ) ]  =I  ddrC(r ,  1 ) -  
t ‘Z-“) ’z ,  where m ( f )  it the total magnetization per spin at time f and N is the number 
of spins. With this combination of exponents fixed, one only has to fit a single exponent 
in (2) to obtain values for both q and z. 

In earlier work [ 5 ]  we have tested this approach on the ZD king model. In this 
case q =; is known exactly, as is T,, so z can be fitted directly in equation (2). A very 
good scaling plot was obtained with z = 2.15, consistent with estimates obtained from 
other methods i6j. 

For Ising spin glasses, the analogue of equation (1) is 

c ( r ,  t )  = [(s(x, t ) S ( x +  r, r))’] (3) 
where [. . .] indicates an average over the quenched disorder. As before, (. . .) indicates 
averages over both thermal noise and initial conditions. In order to evaluate C(r ,  f )  
within a Monte Carlo simulation we introduce two replicas of the system, i.e. we 
simulate two independent systems with identical sets of exchange interactions. Then 

(4) 

The systems are started from independent initial conditions and subjected to indepen- 
dent thermal noise, i.e. different random numbers are generated for the Monte Carlo 
updates in each system. The result for C(r,  1 )  is to be compared with the scaling 
prediction (2). Again the ratio (2- q ) / z  can be determined separately [7] by measuring 

c(r, t ) = [ ( S ( ’ ) ( x ,  t )S ‘ l ’ (x+r ,  t)S‘”(x, t ) S ‘ 2 ’ ( x + r ,  t))]. 

the ‘non-equilibrium spin glass susceptibility’ xSG( 1 )  = N [ ( q 2 ) ]  = I  ddr C(r ,  I) - t‘*-”’< 
where 4 = N-‘ X%, S!’)S!*). . .  . 

The.second method aliows z to be determined completely independently of q. The 
idea is analogous to the one Binder has proposed [SI to determine the exponent w, by 
studying dimensionles,s ratios of moments of the order parameter to eliminate q. We 
can readily adapt Binder’s approach to non-equilibrium growth by calculating the 
combination 

At f = 0 the spins are random so q = N - ’  ZE, S:”S:” will have a Gaussian distribution 
ior iarge N, ieading to g=O. in fact, in the thermodynamic h i t  we expect g=O for 
all f because regions whose spatial separation is large compared to f”‘  will be 
statistically independent. Therefore 9 will have Gaussian distribution for all f :  only 
the width (equal to ( , y s G ( f ) / N ) ’ / 2 )  will change with f. To render equation ( 5 )  useful 
it is necessary to employ finite-size scaling. For a system of linear dimension L one 
expectsg,(f) = f ( f / L ’ ) ,  withf(0) =Oandf(m) = g,forlarge L, where g,is theuniversal 
critical value of g in equilibrium. Therefore a plot of g,(l) versus f / L z  should give a 
single scaling curve for the correct value of z. With z determined, the finite-size scaling 
form for the susceptibility, ,ysG = L2-‘h( f / L z ) ,  can be used to determine q. In order 
to determine the exponents with precision one requires a reasonable range of values 
of tJC. Achieving the necessary run times restricts us in practice to rather small systems 
( L S  10). 

One major diffi.m!ty i” !he determinz!inn nf spin g!zss exponents is the !ack of a 
precise estimate of T,. From the temperature-dependence of g, in equilibrium, Bhatt 
and Young [9] estimate T,= 1.2::;;. The currently accepted best estimate [ 3 ]  for the 
* J  model is T,= 1.18, and most of the simulations were carried out at this temperature. 
However, some simulations were also performed at T =  1.0, 1.1 and 1.3. In practice it 
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was not possible to pin down T, precisely from the data. The values of z and 7 obtained 
are, unfortunately, quite sensitive to the value assumed for T,. The value of the ratio 
(2- ~ ) / z ,  however, is somewhat insensitive, and close to the estimate of 0.39 obtained 
by Huse [7] from the study of ,ySG(t) .  

In the study of the equal-time correlation function C (  r, t ) ,  Monte Carlo simulations 
were performed on 48 pairs of systems, each of size 46', with periodic boundary 
conditions. Data for smaller systems shows that the results are not finite-size affected. 
Both systems of a given pair have the same exchange interactions, randomly * I ,  but 
are prepared with independent initial conditions, as discussed above. Runs of 9000 
Monte Carlo steps per spin (MCS) were performed using the heat bath algorithm, with 
parallel updating within a sublattice and sequential updating of the two suhlattices, 
1 MCS corresponding to a complete update of both sublattices. We emphasize once 
more that no 'equilibration' is required. Instead we make a virtue of necessity by 
exploiting the scaling property (2) of the system out of equilibrium. 

All the C(r ,  1 )  studies were performed at the estimated critical temperature, [3] 
T = 1.18. A small error in the location of T, should not be too important as long as 
the non-equilibrium correlation length t"' is much smaller than the equilibrium 
correlation length 6 at T = 1.18. In order to reduce the number of adjustable parameters 
to one, we exploit a result of Huse [7], who calculated xsG(t )  - tc2-'"/' for the 3~ + J  

averaging over 2000 realizations of a lo' lattice. We checked Huse's result with 500 
realizations of a 12' lattice and obtained results consistent with (though somewhat 
noisier than) those of Huse. Our subsequent studies of the function gL(t ) ,  equation 
(9, confirmed this estimate. 

In figure 1 we show r3-039'C(r, t )  versus r/ t"'  for z=5.8, the value which gives 
the 'best' overall scaling plot. A subjective estimate of when the scaling becomes 
noticeably worse suggests an uncertainty on z of about 0.4. A number of caveats should, 
however, be borne in mind. The first point to note is that the length scale c( 1 )  - t"' 

-"-.-D lcino "r.., cnin ~ o l i ~ r  .--- st -. the -.- s a m e  I -... 1 temn-ntllre .11.. r- .-.-.-, T = ! . ! 8 ,  2nd obtained (?-?)/z=O.?O by 
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Figure 1. Scaling plot for the equal-time correlation function of the 3D-t I king spin glass 
quenched from T = m t o  T =  l . l S =  T.. Weplot r"-'*"C(r. 1 )  versus rll '" with ( 2 - 7 ) / ~ =  
0.39 (taken from Hure [7]) and z = 5.8. The data represent an average over 48 pairs of 46' 
systems. 
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is not very large even at the latest times attained, varying from about 2.0 lattice spacings 
at 50 MCS to about 4.8 lattice spacings at 9000 MCS. On the other hand, the corresponding 
data for the pure 2~ king model [ 5 ]  show no deviations from scaling down to the 
shortest time (20 MCS) measured, when 1"' -4.0. A second caveat is that the, ratio 
( 2 - q ) / z  has been taken to be precisely 0.39, the value obtained by Huse [7], who 
did not quote an error on this number. We have investigated the effect of varying 
( 2 - q ) / z  between 0.37 and 0.41, the range of values suggested by our g(r) studies 
discussed below:Over this range we find no perceptible deterioration in the data 
collapse if z is adjusted appropriately. The 'best' value of z (obtained from the 'best 
fit by eye' to the scaling form for C(r,  f)) is found to vary more or less linearly between 
6.15 and 5.40 as ( 2 - q ) l r  is varied from 0.37 to 0.41. Note that our quoted error of 
0.4 on z includes both of these extreme values for z. The corresponding 'best estimates' 
for q vary between -0.28 and -0.21, with a central estimate of -0.26, based on Huse's 

from 
the C ( r ,  1 )  data are z=5.8+0.4 and q =-0.26*0.16. Again, one must bear in mind 
that these estimates are obtained from rather small values of c(f). 

The studies of g L ( f )  are complicated by the fact that the moments of P ( q )  are not 
'self-averaging' (unlike C(r ,  I ) ) ,  so that large numbers of systems are needed to get 
good statistics. In all cases we averaged g ( f )  over at least 10' samples, and in most 
cases lo4 samples. The data for g L ( f )  are shown in figure 2, where the value of z has 
been chosen to give the 'best' scaling collapse (judged subjectively) in each case. Where 
it was impossible to obtain a good collapse of all the data, the L = 4 data were sacrificed, 
on the grounds that they are furthest from the scaling regime. We have chosen as 
abscissa the scaling variable fd"/Ld,  rather than simply f /  Lz, for the following reason. 
We note that g, is basically the fourth cumulant of the distribution P ( q ) ,  normalized 
by the square of the second cumulant. To be precise, g= -(q")./2(q2)', where (q4).= 
(q4)-3(q2)2 is the fourth cumulant. Provided [(f) (-f"'), the length scale over which 
equilibrium has been established at  time f, is small compared to the linear dimension 

esiimsie (2- t l j jz=o.jg.  Taking i'iis given, iiie esiimaies o f t  and 

1 6  

. 4  
- 6  

0.2 a 0 8  

%db: . 10 
e., 
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l t ' ' V L P  

Flgurc2.' Finite-sire scaling plots forg,.(l), equation (5 ) .  assuming (top to bottom) 7.= 1.0, 
1.1, 1.18 and 1.3. The corresponding values of I are listed in table 1. To separate the data 
for diffcrenl temperatures, additive constants of 0.9, 0.6 and 0.3 have been included for 
7= 1.0, 1.1, and 1.18 respectively. Data for 'early times ( I  <60 MCS) have been discarded. 
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L of the system, q ( t )  is the sum of ( L / ( ( I ) ) ~  more or less independent contributions. 
Under these conditions one finds readily that g L ( f )  scales as the reciprocal of this 
number, i.e. g L ( l ) - ( l ” z / L ) d  for [‘Iz<< L. It follows that the plots in figure 2 should 
be initially linear, and the data bear this out. In fact a direct plot of In g versus In t, 
for systems somewhat larger than those studied here (to obtain a reasonable dynamic 
range free of finite-size effects), would have slope d / z ,  providing a direct measurement 
of 2. 

It is clear from figure 2 that the data d o  not fix T, with any precision. The values 
of z used in figure 2 are shown for each temperature in table 1. Again, the errors are 
subjective, and indicate the limits beyond which the scaling collapse is noticeably 
poorer than that in figure 2. A value of 7 for each temperature was deduced from the 
scaling of the second moment (9’). using the scaling form ( q 2 ) = ( 1 / N ) X s o ( t ) =  

. f ( l / L * ) .  Since ( 9 2 ) - ( ( ~ ) 2 - 7 / ~ d  for t<< L‘, we plot ~ ‘ “ ‘ ( 9 ~ )  versus ( t ” z / L ) 2 - ”  
in figure 3 ,  anticipating once more a linear behaviour initially. This is supported by 
the data of figure 3, in which 7 was adjusted at each temperature to give the best 
scaling collapse, the values of z being those deduced from figure 2. These ‘best’ values 
of 7 are listed in table 1, where the errors are once more subjective and based on the 
range o f  7 consistent with a reasonable data collapse. The effect of varying z on the 

LZ-q-d  

- 
i a b b  i. Estimates aithe exponents r, ana the combination ( i - q j j z  iar the JD ising 
spin glass, far various assumed values of T., obtained from studies of the function & , ( I ) .  

Thcse values are the ones used in the scaling plots of figures 2 and 3. 

T‘ I .o 1.1 1.18 1.3 

i 6 . 6 i 0 . 4  6.4*0.4 5.910.4 5.3*0.6 
’I -0.52+0.08 -0.38+0.08 -0.30+0.08 -0.20+0.08 
( 2 - q ) j z  0.38i0.02 0.37 * 0.02 0.39*0.02 0.415 * 0.03 

0.2 . 10 

0 0.1 0.2 0.3 0 .4  0.5 
l,i;&n 

Figure 3. Finite-size scaling plots for (4’) assuming (tap to bottom) T,= 1.0. 1.1, 1.18 and 
1.3. The corresponding values of z and q are listed in table 1. To separate the data for 
different temperatures. additive c o n ~ t a n t ~  of 0.9.0.6 and 0.3 have been included for T = 1.0, 
1.1. and 1.18 respectively. Data for ‘early’ timcs ( r < 6 0  MCS) have been discarded. 



L738 Letter to the Editor 

value obtained for q was also investigated. Provided z was moved by no more than 
the errors given in table 1, the corresponding 'best' value of q was found to be still 
within the errors for '1 given in the table. 

From table 1 we note that the values of z and q are quite sensitive to the value 
taken for T,. However, the variations in z and q are strongly correlated, such that the 
variation in the ratio (2 -q ) / z  is much smaller. The value of this ratio is consistent 
with that obtained by Huse [7] for T =  1.18, namely (2 -q ) / z=0 .39 .  

To summarize, we have introduced a new method (in fact two new methods) of 
determining the dynamic critical exponent z (and the static exponent q), based on the 
non-equilibrium growth of critical correlations in a system quenched to T, from T = m. 
These methods have the advantage over conventional methods that no Monte Carlo 
time is wasted equilibrating the system. The methods have been used to obtain an 
estimate of z for the 3~ king spin glass. By measuring the equal time correlation 
function ( l ) ,  taking (2- q ) / z  = 0.39 from previous work of Huse [7], and assuming 
T,=1.18, we obtain z=5.8+0.4 where the errors are estimated subjectively from the 
quality of the data collapse. The corresponding estimate for q is q = -0.26*0.16. This 
is consistent with the estimate q = -0.3 * 0.2 obtained by Bhatt and Young [9]. Measure- 
ments of the function g ( t )  defined by ( 5 ) ,  combined with finite-size scaling analyses, 
give, for an assumed critical temperature T,= 1.18, the estimates z=5 .9*0 .4  and 
7 = -0.30+0.08. Combining the estimates from the two different methods gives the 
final results z=5.85*0.03 and q = -0.29+0.07. Previous estimates of z and q. based 
on T,= 1.175 and 1.2 respectively, are z = 6* 1 [3] and q = -0.3 *0.2 [9], so the current 
method provides a more precise determination of both exponents than was previously 
available. 

AB and KH thank M A Moore and A P Young for discussions. K H  and RB thank 
the SERC for Research Studentships. 
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